Xylem embolism alleviated by ion-mediated increase in hydraulic conductivity of functional xylem: insights from field measurements.

نویسندگان

  • Patrizia Trifilò
  • Maria A Lo Gullo
  • Sebastiano Salleo
  • Katia Callea
  • Andrea Nardini
چکیده

Recent studies have shown that, in some species, xylem hydraulic conductivity (K(h)) increases with increasing cation concentration of xylem sap. Evidence indicates that K(h) increases as a result of the de-swelling of pit membrane pectins caused by cation neutralization of polygalacturonanes. We tested whether this ionic effect partly compensates for the embolism-induced loss of stem hydraulic conductivity (PLC) by increasing K(h) of functioning conduits. We report changes in PLC, leaf water status and potassium concentration ([K(+)]) of xylem sap measured in April and July in two evergreens (Ceratonia siliqua L. and Phytolacca dioica L.) and one deciduous tree (Platanus orientalis L.) growing in the field in Sicily. In summer, Ceratonia siliqua and Phytolacca dioica showed similar native embolism (PLC = 30-40%) and [K(+)] of xylem sap (14 to 17 mM), and K(h) of stems perfused with 10 to 25 mM KCl increased by 15 to 18% compared with K(h) of stems perfused with a low concentration of a multi-ionic solution. In contrast, native [K(+)] of sap of Platanus orientalis was 50% of that in the two evergreens in summer, with a parallel lack of detectable changes in PLC that was below 10% in both spring and summer. The ionic effect was PLC-dependent: the enhancement of K(h) induced by 10 to 25 mM KCl changed from 15% for fully hydrated stems to 50-75% for stems with PLC = 50%. In Ceratonia siliqua, PLC was less than 10% in spring and about 40% in summer; concurrently, xylem sap [K(+)] increased from 3 to about 15 mM. This [K(+)] at the recorded PLC would cause an increase in residual K(h) of about 30%. Hence, the actual reduction in water transport capacity of Ceratonia siliqua stems in summer is about 20%. Similar calculations for Phytolacca dioica suggest that the actual loss of hydraulic conductivity in stems of this species in summer would be only about 10%, and not 30% as suggested by hydraulic measurements performed in the laboratory. We conclude that an increase in [K(+)] of xylem sap might be involved in the up-regulation of residual K(h), thus substantially alleviating the embolism-induced reduction in leaf water supply.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coping with drought-induced xylem cavitation: coordination of embolism repair and ionic effects in three Mediterranean evergreens.

Embolism repair and ionic effects on xylem hydraulic conductance have been documented in different tree species. However, the diurnal and seasonal patterns of both phenomena and their actual role in plants' responses to drought-induced xylem cavitation have not been thoroughly investigated. This study provides experimental evidence of the ability of three Mediterranean species to maintain hydra...

متن کامل

Ion-mediated enhancement of xylem hydraulic conductivity in four Acer species: relationships with ecological and anatomical features.

The 'ionic effect', i.e., changes in xylem hydraulic conductivity (k(xyl)) due to variation of the ionic sap composition in vessels, was studied in four Acer species growing in contrasting environments differing in water availability. Hydraulic measurements of the ionic effect were performed together with measurements on the sap electrical conductivity, leaf water potential and vessel anatomy. ...

متن کامل

Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees.

Xylem vessels of Prunus persica Batsch (peach) and Juglans regia L. (walnut) are vulnerable to frost-induced embolism. In peach, xylem embolism increased progressively over the winter, reaching a maximum of 85% loss of hydraulic conductivity (PLC) in early March. Over winter, PLC in walnut approached 100%, but the degree of xylem embolism varied during the winter, reflecting the ability of waln...

متن کامل

Xylem traits mediate a trade-off between resistance to freeze-thaw-induced embolism and photosynthetic capacity in overwintering evergreens.

Hydraulic traits were studied in temperate, woody evergreens in a high-elevation heath community to test for trade-offs between the delivery of water to canopies at rates sufficient to sustain photosynthesis and protection against disruption to vascular transport caused by freeze-thaw-induced embolism. Freeze-thaw-induced loss in hydraulic conductivity was studied in relation to xylem anatomy, ...

متن کامل

Mechanisms of xylem recovery from winter embolism in Fagus sylvatica.

Hydraulic conductivity in the terminal branches of mature beech trees (Fagus sylvatica L.) decreased progressively during winter and recovered in the spring. The objective of this study was to determine the mechanisms involved in recovery. Two periods of recovery were identified. The first recovery of hydraulic conductivity occurred early in the spring, before bud break, and was correlated with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tree physiology

دوره 28 10  شماره 

صفحات  -

تاریخ انتشار 2008